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Introduction 

Over the years many articles have been published discussing the dissolution 
kinetics of drugs. It appears that there is no general model, based on theory, which 
applies in all circumstances, but that dissolution behaviour varies with many factors, 
including the form and dimensions of the drug form under study, its porosity and 
the apparatus used. 

As this stands. the need for the testing the validity of a hypothesized model in a 
particular situation is obvious. Nevertheless, some investigators rely only on a visual 
inspection to see if some model fits their data (Parrot et al., 1955; Goldberg et al., 
1965; Langenbucher, 1969). Often linear regression is performed and the goodness 
of fit is then evaluated by looking at the correlation coefficient (Carstensen et al., 
1978) or, what is equivalent, the standard error of the estimate (De Blaey and Van 
der Graaff, 1977). However, these measures are difficult to interpret: for instance, 
what is the conclusion when a correlation coefficient 0.998 is found? 

In this article a method is described, which can be used to test statistically if an 
equation, wilich is expected to describe the dissolution kinetics, may be considered 
to be valid or not. 

Methods 

A kinetic model can usually be seen as a transformation of the data, after which 
the regression on time should be linear. Therefore testing if a model holds can best 
be done by testing the linearity of the regression line. But here we meet a problem: 
for a normal statistical test of linearity it is necessary to have more measurements 
made at each time to estimate the residual variance free of departure-from-linearity 
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Fig. 1. Dissolution curves of 3 identical theophylline tablets in a sandwich apparatus. 

effects. When two or more drug-forms are dissolved and measured to meet this 
difficulty, it appears that the variation between the measurements at the same time 
will be quite large. This is because the measurements made on one dissolving 
drug-form constitute a time series and are not independent from one another. 
Although the drug-forms will dissolve according to the same model, the dissolution 
rate may vary somewhat during the process, leading to small differences in the 
amount dissolved, and these differences will persist in all subsequent measurements 
(see Fig. 1). 

Our approach to this problem is to test the linearity by looking at the residuals of 
the regression line as a time series. If a wrong model is used, a non-linear 
relationship will be obtained. This means that positive residuals will generally follow 
each other and negative residuals too (see Fig. 4b). On the other hand. if the 
residuals lie scattered randomly around zero, the conclusion is justified that the 
transformation has yielded a straight line, to which linear regression can be validly 
applied. 

From the diverse statistics available for testing this so-called serial correlation. vve 
have used the wellknown Durbin-Watson statistic d, which is defined by 
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where ei = differeuce between the transformed value of measurement i and the value 
predicted from the regression line; and n = number of measurements. Note: mea- 
surements have to be equally spaced in time. 

For n = 1 no regression line exists and for n = 2 all residuals will be zero. For 
n = 3 the absolute value of the second residual will always be twice that of the first 
and the third residual, which leads to a meaningless d = 3 invariably. But when 
n s 3 the Durbin-Watson statistic becomes a measure of serial correlation with 
values between 0 and 4. Durbin and Watson (195 1) have given formulae for the 
mean and variance of d in the null case, i.e. when no serial correlation is present: 

6 

E(d) = 
n(n+ 1) 

n-2 

4 i 3n-4+ 
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- n-2 (E(d))2 

var(d) = 
n2(n+l)2 n(n’-1) 2 

n(n - 2) (3) 

It can be noticed, that when n is not too small, E(d) is approximately 2. When 
subsequent residuals tend to have the same sign, we have positive serial correlation. 
A high positive serial correlation leads to small values of d. A high value of d is 
obtained when a positive residual is most likely followed by a negative residual and 
vice versa. This uncommon situation is referred to as negative serial correlation and 
needs not bother us here any further. Non-line~ity will normally result in a positive 
serial correlation, so our test will be one-sided and we will reject the kinetic model 
when d is lower than a certain threshold value. Unfortunately, the shape of the 
distribution of d is not exactly known, so exact critical values cannot be obtained_ 
However. it is possible to calculate upper and lower bounds to these critical values. 
These are denoted by d, and d, and were tabulated by Durbin and Watson (1951) 
for n > 15 and several significance levels. Hannan (1957) has shown, that in simple 
linear regression and under certain conditions also in multiple regression, the upper 
limit d, is an extremely good approximation to the correct acceptance limit, 
differences being of the order of I/n’. So in testing kinetic models we will reject the 
model when d c d u. 

Another problem arises when we have less than 15 measurements, because no 
values of d l, (and d L ) are available. We can, however, approximate d, by assuming 
that d has a normal distribution and then use Eqns. 2 and 3 for ~lculatillg a 
one-sided lower bound. For a significance level (x = 0.05 this approximate bound 
becomes: 

4 = E(d) - 1.64 \ var( d) (4) 

For n S+ 15 ci\; approximates d, very closely. We therefore recommend for the sake 
of simplicity to discard of the use of d, and to use the normal approximation d’o in 
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all cases. It must be stressed, 
good the approximation is for 

For ready reference some 
equations, are given 

however, that we do not know at this moment how 
small values of n. 
values of E(d) and d;, calculated with the above 

in Table 1 and graphically shown in Fig. 2. 

A practical example 

One can use this test for a given dataset by computing just one regression line on 
all available measurements and then computing one value of d. But experience has 
shown, that the dissolution kinetics are often not constant during the process. The 
conclusion that a certain model does not match all measurements may be less 
important than the conclusion that the model does hold up to a certain point of the 
dissolution process. For this reason we use the following procedure: d is computed 
from the regression line through the first 4 points. Then one by one the other points 
are added in the regression and d is calculated each time. The graph of d against the 

TABLE 1 

VALUES OF THE EXPECTATION AND APPROXIMATE CRITICAL VALUES OF d DEPEND- 
ING ON THE NUMBER OF DATA POINTS n 

n E(d) d’u 
(a = 0.05) 

3 3.000 3.000 
4 2.700 I .888 
5 2.533 1.585 
6 2.429 1.451 
7 2.357 1.387 
8 2.306 1.356 
9 2.267 1.343 

10 2.236 1.340 
11 2.212 1.342 
12 2.192 1.348 
13 2.176 1.355 
14 2.162 1.364 
I5 2.150 1.373 
16 2.140 1.382 
17 2.131 1.392 
18 2.123 1.401 
19 2.116 1.410 
20 2.110 I.419 
25 2.086 1.460 
30 2.07 1 1.494 
35 2.060 1.523 
40 2.052 1.548 
x 2.000 2.000 
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Fig. 2. Expectation and critical values of d as a function of the number of data points in the regression n. 
A value of d falling outside the shaded area means that we cannot use the dissolution model to obtain a 

straight line. 

TABLE 2 

CORRELATION COEFFICIENTS AND DURBIN-WATSON STATISTICS ACCORDING TO 2 
Dl FFF RENT MODELS 

II Time 

(min) 
Frac- 
tion 
dis- 

solved 

Square-root law p = l/2 Cube-root law p = l/3 

Corr. Durbin- Corr. Durbin- 
coef. Watson coef. Watson 

stat. st. 

4 20 0.228 0.99944 2.04 0.99959 2.06 

5 25 0.284 0.99972 2.19 0.99979 2.58 

6 30 0.338 0.99983 2.16 0.99982 2.07 

7 35 0.3vQ 0.99987 I .88 0.99978 1.34 

8 40 0.436 0.9999 I 2.15 0.99984 1.19 

Y 45 0.485 0.99994 2.23 0.99982 1 a4 

I 0 so 0.m 0.99995 2.27 0.99983 0.81 

II 55 0.574 0 99995 2.23 0.99974 0.71 

I:! ti0 0.614 0.99996 2.15 0.99970 0.50 

13 6S 0.650 0.99997 2.20 0.9997 1 0.40 

14 70 0.688 0.99997 2.27 0.99966 0.38 

IS 75 0.716 0.99993 I .56 0.9997 1 0.41 

16 80 0.748 0.9999 1 1.00 0.99973 0.41 

17 85 0.777 0.99989 0.72 0.99973 0.37 
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number of measurements involved (or equivalently, against time) now shows up to 
what point the measurements do not contradict the model. 

In our example the dissolution process of theophylline tablets with a porosity of 
about 1.5% was studied by sampling the dissolution medium (0.1 N HCl) at equal 
time intervals. The release studies were performed at 37 &- 0.5OC in a sandwich 
apparatus (De Haan and Lerk, 1982). Two models are tested: the well-known 
cube-root law, based on theory, and an empirical square-root law (De Blaey and Van 
der Graaff, 1978). The transformations applied were 

y = 1 - (1 - f,)P 

where f, = fraction dissolved at time t, p = l/3 for the cube-root law. and p = l/2 
for the square root law. Values of y for 3 tablets were averaged and regression on t 

then yielded values of d according to the procedure mentioned above. These results 
are given together with the correlation coefficients (for comparison) in Table 2, and 
they are shown graphically in Fig. 3. For a better understanding we show the plots 
of residuals e against time in Fig. 4: 

Departure from the cube root-law is observed rapidly (t = 35 min. about 40% 
dissolved), whereas the square-root law seems to fit the data well up to t = 70-75 
min, when about 70% is dissolved. It has to be stressed, that deviations from 
linearity would have been detected earlier, when the time interval between measure- 
ments would have been shorter. When a large number of points is considered, serial 

=r , 
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correlation will always be found, whatever the kinetic model is. In other words, we 
use the Durbin-Watson test to detect departures from linearity, and at the same time 
have a tool to check, if the dependency between subsequent measurements, which in 
theory of course always exists, will be troublesome for the application of linear 
regression analysis- 

c 

Fig. 4. Plots of residuals against time for regression lines based on 2 different models for up to t = 30 min 
(cube-root law = ‘4, and square-root law = D). t = 70 min (resp.. B and E) and t = 85 min (resp. C and F). 
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Conclusions 

The Durbin-Watson statistic for serial correlation can be used to test the validity 
of kinetic models for dissolution, especially to examine if it is allowed to apply linear 
regression analysis to the transformed measurements. When the test statistic d is 
lower than the critical value d;, we can state with an inconfidence level of 
approximately 5% that the data points cannot be fitted properly by the hypothesized 
model. 

By adding the measurements one by one to the regression analysis, a point can be 
established up to which the model can be used. 
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